熟料-低摻量混合材體系助磨劑的增強(qiáng)效果研究
0 引言
在本人前期文章中[1]研究了不同官能團(tuán)助磨劑對(duì)純硅酸鹽水泥熟料體系和熟料-低摻量混合材體系的助磨效果影響的作用規(guī)律,結(jié)果表明,試驗(yàn)中的各類(lèi)助磨劑組分對(duì)熟料體系和熟料-低摻量混合材體系的助磨效果和增強(qiáng)效果基本相同;同時(shí)研究了多元醇和多元醇復(fù)合、多元醇和多元醇胺復(fù)合的情況,結(jié)果表明,對(duì)于熟料-低摻量混合材體系,丙二醇和丙三醇含量較高的復(fù)合多元醇助磨效果較好,乙二醇含量較高的復(fù)合多元醇助磨效果相對(duì)較弱;乙二醇與TEA復(fù)合具有助磨疊加效應(yīng),丙二醇與TEA復(fù)合具有助磨-增強(qiáng)功能疊加效應(yīng)。因此本文將進(jìn)一步研究以下2個(gè)方面的問(wèn)題:(1)通過(guò)復(fù)配,研究適用于熟料-低摻量混合材體系的增強(qiáng)型助磨劑(分為早強(qiáng)型、后強(qiáng)型和早強(qiáng)兼后強(qiáng)型)復(fù)配方案;(2)復(fù)合助磨劑對(duì)水泥與減水劑相容性的影響及調(diào)控方法。
1 原材料與試驗(yàn)方法
1.1 原材料
熟料和天然二水石膏由上海寶山南方水泥(集團(tuán))有限公司提供,石灰石和煤矸石(700 ℃煅燒2 h)由浙江湖州某水泥廠提供,高爐礦渣由上海寶鋼提供。水泥原材料的化學(xué)成分見(jiàn)表1。多元醇類(lèi):乙二醇、丙二醇、丙三醇;多元醇胺類(lèi):三乙醇胺,二乙醇單異丙醇胺,三異丙醇胺;糖蜜。以上試劑均采用國(guó)藥集團(tuán)化學(xué)試劑有限公司的分析純產(chǎn)品,糖蜜為市售工業(yè)級(jí)助磨劑。三聚磷酸鈉(STPP)純度大于95%,采用上海化學(xué)試劑有限公司的產(chǎn)品。萘系高效減水劑為棕色粉體,葡萄糖酸鈉含量為3%,推薦摻量為0.8%,由上海同樹(shù)實(shí)業(yè)有限公司提供。聚羧酸高效減水劑為棕色液體,濃度為30%,葡萄糖酸鈉含量為3%,推薦摻量為0.8%,由上海市建筑科學(xué)研究院提供。
1.2 試驗(yàn)方法
試驗(yàn)前篩取1~7 mm的熟料備用,將熟料和石膏按質(zhì)量比95∶5混合,同時(shí)將石灰石、煤矸石、高爐礦渣按試驗(yàn)比例摻加到熟料體系中,用Φ500mm×500 mm標(biāo)準(zhǔn)試驗(yàn)?zāi)シ勰ブ令A(yù)定時(shí)間,過(guò)0.9 mm篩,測(cè)試水泥比表面積、篩余、粒徑分布、膠砂強(qiáng)度等指標(biāo)。摻加助磨劑時(shí),助磨劑的摻量均為水泥質(zhì)量的0.1%(含水)。粉磨物料為熟料-低摻量混合材體系,每組5 kg。用勃氏法和篩析法測(cè)試粉磨樣品的比表面積和篩余,并與未摻助磨劑的樣品進(jìn)行對(duì)比,評(píng)價(jià)助磨劑的助磨效果。
測(cè)試水泥粉磨比表面積、篩余、膠砂強(qiáng)度、標(biāo)準(zhǔn)稠度用水量和凝結(jié)時(shí)間指標(biāo)分別參照GB/T 8074—2008《水泥比表面積測(cè)定方法 勃氏法》、GB/T 1345—2005《水泥細(xì)度檢驗(yàn)方法 篩析法》、GB/T 17671—1999《水泥膠砂強(qiáng)度檢驗(yàn)方法(ISO法)》、GB/T 1346—2011 《水泥標(biāo)準(zhǔn)稠度用水量、凝結(jié)時(shí)間、安定性檢驗(yàn)方法》。按照J(rèn)C/T 1083—2008 《水泥與減水劑相容性試驗(yàn)方法》中的凈漿流動(dòng)度法測(cè)試添加減水劑的水泥凈漿流動(dòng)性。水泥用量為500 g/組,水灰比為0.29,萘系減水劑和聚羧酸減水劑的摻量均為0.8%。通過(guò)比較摻與未摻助磨劑粉磨的水泥樣品的凈漿流動(dòng)性,評(píng)價(jià)這些助磨劑組分對(duì)水泥與減水劑相容性的影響。
2 結(jié)果分析與討論
2.1 增強(qiáng)型助磨劑研究
2.1.1 早強(qiáng)型助磨劑的研究
粉煤灰、煤矸石、礦渣等混合材的早期活性較低。如果提高這類(lèi)混合材在水泥中的摻量,必須要考慮早期強(qiáng)度的損失,宜選用早強(qiáng)型助磨劑。此外,早強(qiáng)型助磨劑還適用于后期強(qiáng)度富余較多的水泥,以實(shí)現(xiàn)早期強(qiáng)度與后期強(qiáng)度的平衡。 TEA和NaSCN有較好的早強(qiáng)效果,可用于配制早強(qiáng)型助磨劑。但是它們的助磨效果欠佳。為了滿(mǎn)足助磨要求,配入適量助磨效果較好的組分(如丙三醇、糖蜜)。早強(qiáng)型助磨劑的具體組成見(jiàn)表2。
高熟料空白水泥D80的組成為“80%熟料-5%石膏-5%石灰石-10%煤矸石”,低熟料空白水泥D75的組成為“75%熟料-5%石膏-5%石灰石-15%煤矸石”,即D75用煤矸石取代了5%的熟料。按D75的材料組成測(cè)試助磨劑D1~D6的助磨效果和增強(qiáng)效果,并與D80進(jìn)行對(duì)比,討論通過(guò)這些早強(qiáng)型助磨劑減少熟料、增加混合材的效果。早強(qiáng)型復(fù)合助磨劑粉磨的水泥的基本性能列于表3,助磨效果和增強(qiáng)效果見(jiàn)圖1。
從圖1(1)和(2)可以看出,水泥組成相同時(shí),助磨劑D1~D6粉磨的水泥比表面積較大,45 μm篩篩余較小,表明它們都有較好的助磨效果。助磨劑D3粉磨的水泥比表面積最大,45 μm篩篩余最小,助磨效果最好,其次為D6和D2。助磨劑D3由TEA和丙三醇復(fù)合而成,助磨效果明顯優(yōu)于單獨(dú)使用TEA(D1)。單獨(dú)使用NaSCN時(shí)的助磨效果不明顯,與丙三醇復(fù)合而成的助磨劑D6可以使比表面積提高16 m2/kg,45 μm篩篩余減少2.2%,有明顯的助磨效果??梢?jiàn)丙三醇使復(fù)合助磨劑D3和D6有較好的助磨效果。同樣,TEA與糖蜜復(fù)合(D2)也能取得較好的助磨效果。NaSCN與糖蜜復(fù)合(D5)的助磨效果欠佳。
圖1 早強(qiáng)型復(fù)合助磨劑助磨效果和增強(qiáng)效果
從圖1(3)可以看出,與空白水泥D75相比,助磨劑D1~D6粉磨的水泥3 d抗壓強(qiáng)度均有不同程度的提高,這是因?yàn)樗鼈兌己休^多的早強(qiáng)組分TEA或NaSCN。復(fù)合助磨劑D2和D3的早強(qiáng)效果最好,可以使3 d抗壓強(qiáng)度提高2.1~2.4 MPa(增強(qiáng)10%左右),從而使低熟料水泥的早期強(qiáng)度達(dá)到高熟料水泥(D80)的水平。這兩種助磨劑可以補(bǔ)償熟料降低5%引起的早期強(qiáng)度損失。D1和D4基本上也能滿(mǎn)足提高水泥早期強(qiáng)度的要求,只是效果稍低于D2和D3。復(fù)合助磨劑D5和D6的增強(qiáng)效果稍差,說(shuō)明NaSCN不宜與糖蜜或丙三醇配制早強(qiáng)型助磨劑。這些助磨劑對(duì)水泥的28 d強(qiáng)度影響較?。ǎ?%),如圖1(4)所示。
上述結(jié)果表明,對(duì)于熟料-低摻量混合材體系,以早強(qiáng)效果較好的TEA為主要組分,助磨效果較好的丙三醇或糖蜜為輔助組分,復(fù)合后有助磨-增強(qiáng)功能疊加效應(yīng),既能提高水泥早期強(qiáng)度,又能滿(mǎn)足助磨要求,可以配制早強(qiáng)型復(fù)合助磨劑。NaSCN則不宜與糖蜜或丙三醇復(fù)配作早強(qiáng)型助磨劑。
2.1.2 后強(qiáng)型助磨劑的研究
后強(qiáng)型助磨劑主要用于早期強(qiáng)度富余較多、后期強(qiáng)度富余較少的水泥。選用惰性的石灰石和火山灰質(zhì)的煤矸石作混合材,活性較低,如果減少熟料用量,增加混合材摻量,則后期強(qiáng)度難以保證。
高熟料空白水泥E81的組成為“81%熟料-4%石膏-5%石灰石-10%煤矸石”(水泥廠原配比),低熟料空白水泥E76的組成為“76%熟料-4%石膏-5%石灰石-15%煤矸石”(試驗(yàn)配比),即E76用煤矸石取代了原配比中5%的熟料。按低熟料水泥E76的材料組成測(cè)試助磨劑的助磨增強(qiáng)效果,并與高熟料空白水泥E81進(jìn)行比較,探討助磨劑提高后期強(qiáng)度、減少熟料用量的效果。三異丙醇胺(TIPA)對(duì)熟料體系有較好的助磨效果和后強(qiáng)效果,可用作后強(qiáng)型助磨劑組分。選用成本低廉的糖蜜與之復(fù)配,具體組成見(jiàn)表4。
后強(qiáng)型助磨劑粉磨的水泥的基本性能列于表5。除E1(單獨(dú)使用糖蜜)外,其他三種助磨劑可以使水泥比表面積提高23~25 m2/kg,45 μm篩篩余降低2.2%~3.1%,助磨效果顯著,見(jiàn)圖2。
表5 后強(qiáng)型助磨劑粉磨的水泥的基本性能
與空白水泥E81相比,E76用煤矸石取代了5%的熟料,導(dǎo)致3 d抗壓強(qiáng)度降低1.5 MPa(約5.5%),28 d抗壓強(qiáng)度降低2.9 MPa(約6.5%)。助磨劑E2~E4含有20%~30%的TIPA,可以使28 d強(qiáng)度提高3.5~6.0 MPa,增強(qiáng)8.4%~14.4%,從而達(dá)到甚至超過(guò)高熟料空白水泥E81的水平,如圖2(4)所示。盡管E2~E4對(duì)早期強(qiáng)度提高不大,但是仍然能保證3 d強(qiáng)度遠(yuǎn)遠(yuǎn)高于《通用硅酸鹽水泥》(GB 175—2007)的要求。
圖2 后強(qiáng)型復(fù)合助磨劑助磨效果和增強(qiáng)效果
上述結(jié)果表明,助磨劑E2~E4有較好的助磨效果和明顯的后強(qiáng)作用,可以使該廠的水泥熟料減少5%,相應(yīng)地提高混合材摻量,并維持水泥強(qiáng)度等級(jí)不變。與單獨(dú)使用TIPA(E4)相比,TIPA與糖蜜復(fù)合而成的助磨劑E3助磨效果更好,成本也比較低,因此,可以選用E3(62.5%水-25%TIPA-12.5%糖蜜)作為后強(qiáng)型助磨劑。由此可見(jiàn),對(duì)于熟料-低摻量混合材體系,以后強(qiáng)效果較好的TIPA為主要組分,助磨效果較好且成本較低的糖蜜為輔助組分,復(fù)合后有助磨-增強(qiáng)功能疊加效應(yīng),既能提高水泥后期強(qiáng)度,又能滿(mǎn)足助磨要求,可配制后強(qiáng)型復(fù)合助磨劑。
[Page]
2.1.3 早強(qiáng)兼后強(qiáng)型助磨劑的研究
二乙醇單異丙醇胺(DEIPA)對(duì)熟料體系(硅酸鹽水泥)有較好的助磨效果,還可以同時(shí)提高水泥的早期強(qiáng)度和后期強(qiáng)度[2]。DEIPA的成本稍高于TEA和TIPA,早強(qiáng)效果略低于TEA,后強(qiáng)效果與TIPA相差不大。將DEIPA與糖蜜(或丙三醇)復(fù)合,配制早強(qiáng)兼后強(qiáng)型助磨劑,具體組成見(jiàn)表6。高熟料空白水泥F80的組成為“80%熟料-5%石膏-5%石灰石-10%煤矸石”,低熟料空白水泥F75的組成為“75%熟料-5%石膏-5%石灰石-15%煤矸石”,即F75用煤矸石取代了5%的熟料。按F75的材料組成測(cè)試助磨劑F1~F3的助磨增強(qiáng)效果,并與F80進(jìn)行對(duì)比,討論它們減少熟料、增加混合材的效果。
早強(qiáng)兼后強(qiáng)型助磨劑粉磨的水泥的基本性能列于表7。摻與未摻助磨劑的水泥的比表面積、篩余和強(qiáng)度對(duì)比見(jiàn)圖3。
圖3 早強(qiáng)兼后強(qiáng)型復(fù)合助磨劑助磨效果和增強(qiáng)效果
助磨劑F1~F3都有較好的助磨效果,可以顯著提高水泥的比表面積,降低45 μm篩篩余,見(jiàn)圖3(1)和(2)。這三種助磨劑有明顯的增強(qiáng)作用,如圖3(3)和(4)所示,可以使水泥的3 d抗壓強(qiáng)度提高1.7~2.8 MPa(增強(qiáng)7.8%~12.8%),28 d抗壓強(qiáng)度提高3.2~5.8 MPa(增強(qiáng)7.8%~14.0%),使其達(dá)到甚至超過(guò)高熟料空白水泥F80的水平。DEIPA與丙三醇復(fù)合而成的F3助磨效果最好,增強(qiáng)效果稍低于F1和F2。DEIPA與糖蜜復(fù)合而成的F2增強(qiáng)效果最明顯,助磨效果也比較好,適合作早強(qiáng)兼后強(qiáng)型助磨劑。在補(bǔ)償熟料減少5%引起的強(qiáng)度損失之余,F(xiàn)2還保留著較高的富余強(qiáng)度。它可以在保證水泥強(qiáng)度的基礎(chǔ)上減少更多的熟料,使用更多的混合材??梢?jiàn),對(duì)于熟料-低摻量混合材體系,以增強(qiáng)作用較好的DEIPA為主要組分,助磨效果較好的糖蜜或丙三醇為輔助組分,復(fù)合后既能提高水泥早期和后期強(qiáng)度,又有較好的助磨效果,可以配制早強(qiáng)兼后強(qiáng)型復(fù)合助磨劑。
多元醇胺(TEA、TIPA、DEIPA)有明顯的增強(qiáng)作用,以此為主要組分,輔以適量的助磨組分(如丙三醇、糖蜜),可以復(fù)配出滿(mǎn)足不同增強(qiáng)要求的助磨劑——增強(qiáng)型復(fù)合助磨劑,其助磨增強(qiáng)效果優(yōu)于單獨(dú)使用多元醇胺。
2.2 復(fù)合助磨劑與減水劑相容性的檢驗(yàn)及調(diào)控
通過(guò)凈漿流動(dòng)性試驗(yàn),測(cè)試配制的幾種典型復(fù)合助磨劑對(duì)水泥與減水劑相容性的影響,探討調(diào)控助磨劑與減水劑相容性的方法。
2.2.1 復(fù)合助磨劑與減水劑相容性的檢驗(yàn)
萘系減水劑和聚羧酸減水劑的有效摻量分別為水泥質(zhì)量的0.8%和0.22%,凈漿流動(dòng)性試驗(yàn)結(jié)果列于表8和表9。
從表8、表9可以看出:復(fù)合助磨劑粉磨的水泥與空白水泥的初始凈漿流動(dòng)度相差不大;但是,助磨劑A3、C3和D3粉磨的水泥的60 min凈漿流動(dòng)度明顯比空白水泥低15%~30%,D3對(duì)應(yīng)的水泥凈漿在60 min時(shí)基本喪失了流動(dòng)性,它們的流動(dòng)度損失率達(dá)30%~35%,明顯大于空白水泥(僅為20%)??梢?jiàn),這三種助磨劑粉磨的水泥與萘系減水劑和聚羧酸減水劑相容性較差,這與它們含有較多的TEA、丙三醇(GL)或丙二醇(PG)有關(guān)。在之前的文章[3]中試驗(yàn)表明,這些組分摻量較高時(shí)會(huì)對(duì)水泥與減水劑相容性產(chǎn)生不良影響。與之相反,三聚磷酸鈉(STPP)和六偏磷酸鈉(SHMP)作助磨劑可以改善水泥與減水劑的相容性。
2.2.2 復(fù)合助磨劑與減水劑相容性的調(diào)控
在之前的文章[3]中試驗(yàn)表明,助磨劑與減水劑的相容性與它對(duì)水泥標(biāo)準(zhǔn)稠度用水量的影響有關(guān)。顯著降低標(biāo)準(zhǔn)稠度用水量(絕對(duì)值減少0.5%以上)的助磨劑組分可以改善減水劑的作用效果,比如三聚磷酸鈉(STPP)和六偏磷酸鈉(SHMP)。這里嘗試用三聚磷酸鈉(STPP)改善助磨劑與減水劑的相容性,探索調(diào)控助磨劑與減水劑相容性的方法。
STPP的有效摻量為0.01%時(shí),可以使水泥標(biāo)準(zhǔn)稠度用水量減少1.0%[3]。用插值法推算,STPP的有效摻量為0.005%左右時(shí),可以使水泥標(biāo)準(zhǔn)稠度用水量減少0.5%。為穩(wěn)妥起見(jiàn),將STPP的摻量定為0.007%。在復(fù)合助磨劑A3、C3、D3中配入7%的STPP,編號(hào)依次為A3b、C3b、D3b。例如,A3的組成為“70%水-10%EG-15%PG-5%GL”,A3b的組成為“63%水-10%EG-15%PG-5%GL-7%STPP”。試驗(yàn)結(jié)果見(jiàn)表10。
從表10可以看出,摻與未摻STPP的助磨劑粉磨的水泥細(xì)度和強(qiáng)度相差不大,表明STPP對(duì)這些助磨劑的助磨增強(qiáng)效果影響較小。與未摻STPP的助磨劑A3、C3、D3相比,摻加STPP的助磨劑A3b、C3b、D3b粉磨的水泥的標(biāo)準(zhǔn)稠度用水量降低0.6%~0.8%,即STPP表現(xiàn)出一定的“減水作用”。
摻與未摻STPP的助磨劑對(duì)水泥與減水劑相容性的影響見(jiàn)表11和圖4~圖6。與未摻STPP的同類(lèi)型助磨劑相比,STPP使水泥凈漿初始流動(dòng)度略有提高(見(jiàn)圖4),60 min凈漿流動(dòng)度提高20~30 mm(見(jiàn)圖5),流動(dòng)度損失率降低了10%左右(見(jiàn)圖6),明顯改善了助磨劑與減水劑的相容性??梢?jiàn),在助磨劑中加入適量的STPP可以改善助磨劑與減水劑的相容性。
上述結(jié)果表明,如果復(fù)合助磨劑中含有較多的TEA或丙三醇,它們粉磨的水泥可能會(huì)出現(xiàn)與減水劑相容性不良的問(wèn)題。在助磨劑中加入適量的三聚磷酸鈉(STPP),可以改善助磨劑與減水劑的相容性。
圖4 水泥的初始凈漿流動(dòng)度
圖5 水泥的60 min凈漿流動(dòng)度
圖6 水泥的60 min凈漿流動(dòng)度損失率
3 結(jié)論
本文就熟料-低摻量混合材體系進(jìn)行研究,以TEA為主要組分,丙三醇或糖蜜為輔助組分,復(fù)合后可以配制早強(qiáng)型復(fù)合助磨劑;以TIPA為主要組分,糖蜜為輔助組分,復(fù)合后可配制后強(qiáng)型復(fù)合助磨劑;以DEIPA為主要組分,糖蜜或丙三醇為輔助組分,復(fù)合后可以配制早強(qiáng)兼后強(qiáng)型復(fù)合助磨劑。多元醇胺(TEA、TIPA、DEIPA)有明顯的增強(qiáng)作用,以此為主要組分,輔以適量的助磨組分(如丙三醇、糖蜜),可以復(fù)配出滿(mǎn)足不同增強(qiáng)要求的助磨劑——增強(qiáng)型復(fù)合助磨劑,其助磨增強(qiáng)效果優(yōu)于單獨(dú)使用多元醇胺。對(duì)于復(fù)配助磨劑與減水劑的相容性方面,在助磨劑中加入適量的STPP可以改善助磨劑與減水劑的相容性。
編輯:俞垚伊
監(jiān)督:0571-85871667
投稿:news@ccement.com